GCE

Chemistry A

Unit F322: Chains, Energy and Resources
Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
-	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

The following questions should be annotated with ticks and crosses to show how marks have been awarded in the body of the text:
3(c)(i), 3(d), 4(c)(ii) 5(d)(i), 5(e)(i), 5(f)(ii), 6(a)(i), 6(b)(ii), 6(c) and 7(b)

All questions where an ECF has been applied.

Checking additional pages

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

- When you open question 1(a) you will see a view of page 22 one of the Additional Pages.
- If the page is blank then, using the marking mode, annotate the page with an omission mark, ^, or the BP annotation
- Scroll down to page 24 and annotate with a^{\wedge} if the page is blank.
- If pages 22,23 or 24 are not blank then use the paper clip icon to link the pages to the correct questions.
- You may need to contact your Team Leader if you do not know how to do this.

Generic comments

ORGANIC STRUCTURES
For a 'structure' or 'structural formula',

- ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- ALLOW bond drawn to C or H ,
e.g. ALLOW $\mathrm{CH}_{3}-, \mathrm{CH}_{2}-, \mathrm{C}_{3} \mathrm{H}_{7}-$, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal -HO OR OH -
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

- DO NOT ALLOW COH

For a 3D structure,

- For bond in the plane of paper, a solid line is expected:
- For bond out of plane of paper, a solid wedge is expected:
- For bond into plane of paper, ALLOW
- ALLOW a hollow wedge for 'in bond' OR an ‘out bond', provided it is different from the other in or out wedge e.g.:

NAMES

Names including alkyl groups:

- ALLOW alkanyl, e.g. ethanyl (i.e. IGNORE ‘an’)
- DO NOT ALLOW alkol, e.g. ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, e.g. ethyl ethanoate
- ALLOW one word, e.g. ethylethanoate

Names with multiple numbers and hyphens:
Use of 'e'

- ALLOW superfluous 'e', e.g. propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers

- ALLOW absence of hyphens, e.g. propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: e.g. 1.2 OR spaces: 12
- DO NOT ALLOW e.g. 12

Locant numbers in formula must be correct

- DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

- ALLOW any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces
ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

| Question | | Answer | Mark | Guidance |
| :---: | :---: | :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | (a) | (i) | $\begin{array}{l}\text { (compounds or molecules having the) same molecular } \\ \text { formula but different structural formulae } \checkmark\end{array}$ | $\begin{array}{l}\text { ALLOW different structure OR different displayed } \\ \text { formula OR different skeletal formula for structure }\end{array}$ |
| DO NOT ALLOW any reference to spatial/space | | | | |
| Same formula is not sufficient (no reference to | | | | |
| molecular) | | | | |
| Different arrangement of atoms is not sufficient (no | | | | |
| reference to structure/structural) | | | | |$\}$

Question	Answer	Mark	Guidance
(ii)	$\left(n\left(\mathrm{C}_{8} \mathrm{H}_{18}\right) \text { burned }\right)=0.32(\mathrm{~mol})^{\checkmark}$ $\left(n\left(\mathrm{CO}_{2}\right)\right.$ from complete combustion $)=2.56$ or 2.6 mol OR $\left(\text { ratio } n \mathrm{CO}_{2} / n \mathrm{C}_{8} \mathrm{H}_{18}\right)=7.8(125)$ OR $\left(n \mathrm{C}_{8} \mathrm{H}_{18}\right.$ produce $\left.2.5 \mathrm{~mol} \mathrm{CO}_{2}\right)=0.31(25) \checkmark$	2	DO NOT ALLOW ECF from an incorrect moles of octane DO NOT ALLOW ECF from incorrect ratio from equation in (i) ALLOW the following alternate methods Method 1 $\left(\right.$ mass CO_{2} produced $)=110 \mathrm{~g} \checkmark$ (mass CO_{2} from complete combustion) $=8 \times 0.32 \times 44=112.64$ or 112.6 or $113 \mathrm{~g} \checkmark$ Method 2 ($n \mathrm{C}_{8} \mathrm{H}_{18}$ to produce $2.5 \mathrm{~mol} \mathrm{CO}_{2}$) $=0.31(25) \checkmark$ (mass of octane required to produce $2.50 \mathrm{~mol} \mathrm{CO}_{2}$) $=35.6$ OR 35.63 OR $35.625 \mathrm{~g} \checkmark$

Question		Answer	Mark	Guidance
(e)	(i)	Fractional distillation AND cracking \checkmark	1	ALLOW either order
	(ii)	Correct equation showing cracking of an alkane to form ethene	1	ALLOW any correct equation with correct formulae to show cracking forming $\mathrm{C}_{2} \mathrm{H}_{4}$ of the type: alkane \longrightarrow shorter alkane(s) + alkene, $\text { e.g. } \mathrm{C}_{10} \mathrm{H}_{22} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{2} \mathrm{H}_{4}$ ${ }_{10} \mathrm{H}_{22} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{14}+2 \mathrm{C}_{2} \mathrm{H}_{4}$ $\stackrel{\text { ALLOW C }}{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$ ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above. IGNORE state symbols
		Total	9	

Question			Answer	Mark	Guidance
2	(a)		Method 1: 100% OR (only) one product OR no waste product OR addition (reaction) Method 2: < 100\% AND two products OR (also) produces NaBr OR (There is a) waste product OR substitution (reaction) \checkmark	2	ALLOW co-product or by-product for waste product For '< 100\%' ALLOW not 100\% OR method 2 has a low(er) atom economy (compared to method 1) IGNORE produces $\mathrm{Br}^{-} / \mathrm{Na}^{+}$ DO NOT ALLOW incorrect waste products e.g. $\mathrm{Br}_{2}, \mathrm{HBr}, \mathrm{Br}$, Na ALLOW correctly calculated value of 42 or 41.8 up to calculator value of 41.83154324 correctly rounded for second mark DO NOT ALLOW incorrect values for the atom economy of method 2. ALLOW ONLY 1 mark for a statement that both methods have 100% atom economy.
	(b)		Acid \checkmark	1	ALLOW $\mathrm{H}^{+} /$named mineral acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ DO NOT ALLOW 'weak acid' e.g. ethanoic acid IGNORE pressure IGNORE temperature

Question		Answer	Mark	Guidance
(c)	(i)	(Average enthalpy change) when one mole of bonds \checkmark of (gaseous covalent) bonds is broken	2	IGNORE energy required OR energy released DO NOT ALLOW bonds formed
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change $=\mathbf{- 4 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks IF enthalpy change $=\mathbf{+ 4 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 2 marks $($ Energy for bonds broken) $=5538(\mathrm{~kJ}) \checkmark$ $($ Energy for bonds made $)=5580(\mathrm{~kJ}) \checkmark$ $\Delta H_{\mathrm{r}}=-42\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	3	IF there is an alternative answer, check to see if there is any ECF credit possible. two common incorrect answers are: $-970\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $+970\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 1 mark IGNORE signs ALLOW 1076 (bonds broken); 1118 (bonds made) Correct sign required ALLOW ECF for bonds broken - bonds made IF at least one molar ratio is used e.g. $8 \times \mathrm{C}-\mathrm{H}$

Ques	Answer	Mark	Guidance
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF mass = 8.21 (g) award 3 marks Actual $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right) \text { produced }=\frac{3.552}{74}=0.048(\mathrm{~mol}) \checkmark$ theoretical $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)=n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right)=0.048 \times \frac{100}{80}=0.06(\mathrm{~mol}) \checkmark$ Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}=0.06 \times 136.9=8.21(\mathrm{~g}) \checkmark$ 3 SF required	3	ALLOW ECF at each stage ALLOW expected mass $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}=3.552 \times \frac{100}{80}=4.44(\mathrm{~g})$ ALLOW Mass $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ reacted $=0.048 \times 136.9=6.5712(\mathrm{~g})$ ALLOW Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ used $=6.5712 \times \frac{100}{80}=8.21(\mathrm{~g})$ DO NOT ALLOW 8.22 (from use of 137 as M_{r} of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$)
	Total	11	

Question		Answer	Mark	Guidance
(c)	(i)	Pressure: Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules \checkmark Temperature: Statement that: (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat \checkmark Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW fewer atoms on right-hand side OR more atoms on left-hand side. IGNORE comments about the 'exothermic side' or 'endothermic side' Equilibrium mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ OR in forward direction OR favours the right IGNORE Increases yield of $\mathrm{CH}_{3} \mathrm{OH} /$ products (in question) IGNORE responses in terms of rate
(ii)		Low temperature gives a slow rate OR high temperatures needed to increase rate \checkmark High pressure is expensive (to generate) OR high pressure provides a safety risk \checkmark	2	ALLOW high pressure is dangerous IGNORE high pressure is explosive

Ques	Answer	Mark	Guidance
(d)	 Correct drawing of Boltzmann distribution curve Axes labelled: y axis: (number of) molecules AND x axis: energy \checkmark Catalyst lowers the activation energy (by providing an alternative route) (With a catalyst a) greater proportion of molecules with energy greater than activation energy OR (With a catalyst a) greater proportion of molecules with energy equal to the activation energy \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Curve must start at origin. The limit of acceptability is that the curve must start within the first small square nearest the origin. Curve must not touch the x -axis at higher energy IGNORE a slight inflexion on the curve DO NOT ALLOW two curves DO NOT ALLOW a curve that bends up at the end by more than one small square ALLOW particles instead of molecules on y axis DO NOT ALLOW enthalpy for x-axis label DO NOT ALLOW atoms instead of particles or molecules ALLOW ECF for the subsequent use of atoms (instead of molecules or particles) ALLOW annotations on Boltzmann distribution diagram ALLOW (with a catalyst) more molecules have sufficient energy to react IGNORE (more) successful collisions
(e)	Allows reactions to take place at lower temperatures \checkmark	1	ALLOW less heat (required) IGNORE references to pressure IGNORE references to less energy (in question) e.g. lowers E_{a}
	Total	13	

Question		Answer	Mark	Guidance
(iii)		D \checkmark	1	ALLOW $\mathrm{CHF}_{2} \mathrm{Cl}$ ALLOW B OR $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{OR} \mathrm{CF}_{2} \mathrm{CF}_{2}$
(d)	(i)	bond vibrates (more) OR bond bends (more) OR bond stretches (more) \checkmark	1	BOND essential IGNORE molecule vibrates/rotates Assume "It" refers to the molecule and is insufficient DO NOT ALLOW any reference to bond breaking DO NOT ALLOW a stated bond if not present in \mathbf{C} and \mathbf{F} e.g. $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{H}$ not present
(ii)		$\begin{aligned} & \mathrm{Cl}_{3} \mathrm{C}^{+} \checkmark \\ & \mathrm{CF}_{2} \mathrm{Cl}^{+} \checkmark \end{aligned}$	2	ALLOW 1 mark for $\mathrm{Cl}_{3} \mathrm{C}$ AND $\mathrm{CF}_{2} \mathrm{Cl}$ i.e. no + charge used ALLOW 1 mark for $\mathrm{Cl}_{3} \mathrm{C}^{-}$AND $\mathrm{CF}_{2} \mathrm{C}\lceil$ i.e. - charge used on both
		Total	13	

			Answer	Mark	Guidance
5	(a)		First mark diagram on left with p-orbitals labelled OR unlabelled diagram AND the statement: (sideways) overlap of p orbitals Second mark (labelled) diagram on right showing π-bond \checkmark	2	Note: A diagram is required for each mark DO NOT ALLOW C=C in one diagram but ALLOW ECF for subsequent use in another diagram. The bonds shown in the diagram are required ALLOW ECF for missing bonds in second diagram IGNORE any atoms joined to the bonds ALLOW a diagram where the p-orbitals are linked for second mark. e.g.
	(b)	(i)	(series of compounds with the) same functional group OR same/similar chemical properties OR same/similar chemical reactions each successive/subsequent member differing by $\mathrm{CH}_{2} \checkmark$	2	IGNORE reference to physical properties IGNORE same general formula (in question) Differs by CH_{2} is not sufficient (no successive) DO NOT ALLOW same empirical OR have the same molecular formula
		(ii)	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-1} \mathrm{Br} \quad \checkmark$	1	ALLOW $\mathbf{C}_{n} \mathrm{H}_{2 n-1} \mathrm{X}$ ONLY if X is specified as Br (question asks for bromide)
		(iii)	3-bromoprop(-1-)ene \checkmark	1	ALLOW 1-bromoprop-2-ene
	(c)	(i)	Movement of an electron pair \checkmark	1	ALLOW movement of a lone pair OR movement of a bond
		(ii)	Electron pair donor \checkmark	1	ALLOW can donate a lone pair

		Answer	Mark	Guidance
(e)	(i)	Curly arrow from double bond to Br of $\mathrm{Br}-\mathrm{Br} \checkmark$ Correct dipole shown on $\mathrm{Br}-\mathrm{Br}$ AND curly arrow showing breaking of $\mathrm{Br}-\mathrm{Br}$ bond \checkmark $\overbrace{\mathrm{Br} \delta-}^{\mathrm{Br}}{ }^{\delta+}$ Correct carbocation with + charge on C with 3 bonds AND curly arrow from Br^{-}to C^{+}of carbocation \checkmark Correct product: \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Curly arrow must start from bond and go to correct atom DO NOT ALLOW any other partial charges e.g. shown on double bond ALLOW carbocation on terminal CH_{2} DO NOT ALLOW $\delta+$ on C of carbocation. Curly arrow must come from a lone pair on Br^{-} OR from the negative sign of Br^{-}ion (then lone pair on Br^{-} ion does not need to be shown)
	(ii)	Electrophilic addition \checkmark	1	

		Answer	Mark	Guidance
(f)	(i)	H_{2} AND Ni (catalyst) \checkmark	1	ALLOW name or formula for each IGNORE any stated temperature and pressure
	(ii)	(Initiation) $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{C} l \text { AND UV } \checkmark$ (Propagation) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}+\mathrm{Cl} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}+\mathrm{HCl} \checkmark$ $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{BrCl}+\mathrm{Cl} \checkmark$ (Termination) Two from the three termination equations below \checkmark $2 \mathrm{Cl} \longrightarrow \mathrm{Cl}_{2}$ $\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}+\mathrm{Cl} \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{BrCl} \\ & 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Br}_{2} \end{aligned}$ names of steps initiation, propagation and termination linked to one correct equation for each step in this mechanism \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW any ECF in this question IGNORE references to temperature THROUGHOUT, ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above IGNORE dots IGNORE state symbols IGNORE one incorrect termination equation
	(iii)	further substitution OR produces different termination products OR More than one termination step \checkmark substitution at different positions along chain	2	IGNORE mixture of organic products (in question) ALLOW dichloro/multichloro/dibromo/multibromo compounds formed OR an example of a further substitution product OR an example of a different termination product ALLOW more than one hydrogen (atom) can be replaced ALLOW radicals react with each other to form other products ALLOW forms different structural isomers ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced
		Total	25	

Question			Answer	Mark	Guidance
6	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta H_{\mathrm{c}}=\mathbf{- 2 2 6 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 4 marks IF $\Delta \boldsymbol{H}_{\mathrm{c}}=(+) 2260\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks (incorrect sign) IF $\Delta H_{\mathrm{c}}=(\pm) 2257(.2)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks (not 3 sf) Moles Amount, $n, \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ calculated correctly $=0.0175(\mathrm{~mol}) \checkmark$ Energy q calculated correctly $=39501$ (J) OR 39.5(01) (kJ) \checkmark Calculating $\Delta \mathrm{H}$ correctly calculates $\Delta \mathrm{H}$ in $\mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs \checkmark Rounding and Sign calculated value of $\Delta \mathrm{H}$ rounded to 3 sig. fig. with minus sign \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Note: $q=180 \times 4.18 \times 52.5$ ALLOW 39501 OR correctly rounded to 3 sig. fig. (J) IGNORE sign IGNORE working Note: from 39501 J and $0.0175 \mathrm{~mol} \Delta \mathrm{H}=(-) 2257.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n Final answer must have correct sign and three sig figs
		(ii)	ANY TWO FROM THE FOLLOWING incomplete combustion non-standard conditions evaporation of alcohol/water specific heat capacity of beaker/apparatus	2	IGNORE heat loss (in question) ALLOW burns incompletely IGNORE incomplete reaction

Question		Answer	Mark	Guidance
(b)	(i)	$5 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}{ }_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{l}) \checkmark$	1	Balancing numbers AND species AND states all required DO NOT ALLOW multiples of this equation
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change $=\mathbf{- 3 3 2 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks IF enthalpy change $=(+) 3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks Working for CO_{2} AND $\mathrm{H}_{2} \mathrm{O}$ seen anywhere $\begin{aligned} & 5 \times(-) 3940 \text { AND } 6 \times(-) 286 \\ & \text { OR } \mathbf{R} \text { AND } \\ & \text { OR (-)3686 } \checkmark \quad(-) 1716 \end{aligned}$ Calculates ΔH_{c} A further 2 marks for correct answer AND correct sign $\begin{aligned} & =5 \times-394+6 \times-286--366 \\ & =-3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \checkmark \end{aligned}$ A further 1 mark for correct answer AND incorrect or no sign $=(+) 3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$ Cycle wrong way around: $-366-(5 \times-394+6 \times-286)$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 2 marks for -1744 OR -1890 OR -314 OR -4052 Award 1 mark for $1744 \text { OR } 1890 \text { OR } 314 \text { OR } 4052$

| Question | | Answer | Mark | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| (d) | | Labelled diagram showing at least one H-bond between
 alcohol molecule and water \checkmark
 e.g. | IF diagram is not labelled ALLOW Hydrogen bonds / H
 bonds from text | |
| Diagram should include role of an O lone pair and dipole | | | | |
| charges on each end of H bond. | | | | |
| IGNORE alcohol R group, even if wrong | | | | |

Question		Answer	Mark	Guidance
$\mathbf{7}$	$\mathbf{(a)}$	Mole ratio $\mathrm{C}: \mathrm{H}: \mathrm{O}$ is $3.33: 6.67: 3.33 \checkmark$ Empirical formula is $\mathrm{CH}_{2} \mathrm{O} \checkmark$ Molecular formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ AND use of $90 \mathrm{OR} 3 \times 30 \checkmark$	ALLOW $\frac{40.00}{12.0}: \frac{6.67}{1.0}: \frac{53.33}{16.0}$	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

